
SANFACE Software

Project
A data2pdf based application

Author: SANFACE Software
Number of pages: 3
Created: 27 march 1999
Modified: 17 may 1999
Revision: 1

Savera project data2pdf

data2pdf page 2

Index
1. Introduction... 2
2. Syntax.. 2

2.1. Unique operators... 2
2.2. Line operators ... 2
2.3. Multilines operators ... 2
2.4. Mix operators... 3
2.5. Document operators.. 3
2.6. Background operators ... 3
2.7. Page operators.. 3

3. Structure.. 3
4. List of the operators... 4
5. Fonts.. 5
6. An example ... 5

1. Introduction
SANFACE Software enveloped a new tool data2pdf , based on txt2pdf core.
The goal of data2pdf is very simple:
give to the user one or more white PDF pages, where with a language and the
PDF syntax the user can design and write what he wants.
From version 1.5 the user can import also JPEG image.

2. Syntax
The data2pdf language is simple and power, the approach is very similar to
HMTL (from <tag> … </tag> to #!tag# … #!/tag#). To permit a major versatility
is possible to use directly the PDF syntax to design and write.
We can divide the operators in unique operators, line operators, multilines
operators, mix operators.
We can also divide the operator in document operators, background operators,
page operators.

2.1. Unique operators
A unique operator needs to start ad the begin of a new line and end to the end of
the line. The landscape operator is an example:
#!landscape#

It doesn't require an analogue close operator.

2.2. Line operators
The line operator syntax is #!tag# … #!/tag#
A line operator needs to start ad the begin of a new line and end to the end of the
line. The paper operator is an example:
#!paper#a4#!/paper#

2.3. Multilines operators
In a multilines operator the open and the close tags are like unique operators.
The background design operator is an example:
#!bgdesign#

Savera project data2pdf

data2pdf page 3

.9 g
0 G
5 w
25 25 792 545 re
B
#!/bgdesign#

2.4. Mix operators
The line operator syntax is #!tag# … #!/tag#
It can be multilines and the open and close tags can be everywhere inside the
text. The bold operator is an example:
This is a normal text. #!b#This is a bold text.#!/b# Now
it's normal again.

2.5. Document operators
A document operator starts at the beginning of the configuration file and
permits to set a value for all the PDF document.
An example is the paper operator (see 2.2)

2.6. Background operators
At the moment the background operators are three: background design,
background text and background image. Background design permits to define a
background design that will be used in every PDF page. The same for
background text. They are multiline operators.
Background image is a linear operator.

2.7. Page operators
The validity of page operators is only inside the current page description.
An example is the design operator:
#!design#
…
#!/design#

3. Structure
It's important to understand the sequence of the operator to construct correctly
the configuration file:
document operators
background operators
page operator
…
page operator
Inside page operator there is the page substructure:
image
design

Savera project data2pdf

data2pdf page 4

text
Inside text operator there is the text substructure:
textcommand
text with the possibility to mark bold, italic or bolditalic

4. List of the operators
#!font#…#!/font#
linear and document operator. The fonts are: Courier, Helvetica, Times

(IMPORTANT: you can use different fonts or write the same fonts in a different
mode. If you wrong to write it the program will use the default font Courier)
#!paper#…#!/paper#
linear and document operator. The paper format are: letter, a3, a4, a5,
widthxheight (If wrong to write it the program will use the default paper letter)
#!landscape#
unique and document operator
#!title#…#!/title#
#!author#…#!/author#
#!creator#…#!/creator#
#!keywords#…#!/keywords#
#!subject#…#!/subject#
linear and document operator for the INFO fields inside PDF (see the attach
from PDF manual)
#!bgdesign#
…
#!/bgdesign#
#!bgtext#
…
#!/bgtext#
multilinear and background operators. Inside you can use the PDF syntax to
design and write (see the attach from PDF manual)
#!bgimage#image.jpg;width;height;a_cm;b_cm;c_cm;d_cm;e_cm;f_cm#!/bgima
ge#
a b c d e f cm Modifies the CTM by concatenating the specified matrix. Although the
operandsspecify a matrix, they are passed as six numbers, not as an array. (concat)
(PDF 1.3 Manual 8: Page Descriptions 323)

#!page#
#!image#image.jpg;width;height;a_cm;b_cm;c_cm;d_cm;e_cm;f_cm#!/image#
#!design#
…
#!/design#
#!text#

Savera project data2pdf

data2pdf page 5

…
#!/text#
#!/page#
This is the structure of a page: inside page you can use image, design then text.
Inside design you can use the PDF syntax (see the attach from PDF manual).
Inside text you can write normal text with these defaults:
font: the selected font with font size = 10
color font: black
start text point: 50 , page height - 40 (the page height depends by the selected
paper)
vertical tab (the distance from two line): 12
If you want to change the defaults you can use
#!textcommand#…#!/textcommand#
with the PDF syntax and
#!fontsize#…#!/fontsize#
to change the default font size.
Inside the the test you can use:
#!b#…#!/b# bold

#!i#…#!/i# italic
#!bi#…#!/bi# bold italic
Two new operators are:
#!link#link;rect_x1;rect_y1;rect_x2;rect_y2#!/link#
#!circle#x;y;r#!/circle# (you can use circle option only inside design part)

5. Fonts
After the selection of the font with the option #!font#…#!/font#
/F1 is the normal
/F2 is the italic
/F3 is the bold
/F4 is the bold-italic
From version 1.5 now you can use
/F5 is Symbol
/F6 is ZapfDingbats
It’s also supported WinAnsiEncoding

6. An example
#!font#Courier#!/font#
#!paper#a4#!/paper#
#!landscape#
#!title#Project#!/title#

Savera project data2pdf

data2pdf page 6

#!author#SANFACE Software#!/author#
#!creator#data2pdf#!/creator#
#!keywords#Sanface#!/keywords#
#!subject#Project by SANFACE Software#!/subject#
#!bgdesign#
.9 g
0 G
5 w
25 25 792 545 re
B
#!/bgdesign#
#!bgtext#
/F1 15 Tf
0 0 0 rg
1 0 0 1 650 40 Tm
(SANFACE Software) Tj
#!/bgtext#
#!page#
#!design#
3 w
.5 g
200 250 400 70 re
B
#!/design#
#!text#
#!textcommand#1 0 0 1 240 285 Tm#!/textcommand#
#!fontsize#40#!/fontsize#
Project
#!/text#
#!/page#
#!page#
#!design#
1 w
.7 g
27 75 788 50 re
B
27 175 788 50 re
B
27 275 788 50 re
B
27 375 788 50 re
B
27 475 788 50 re
B
#!/design#
#!text#
#!textcommand#50 TL#!/textcommand#
#!textcommand#1 0 0 1 50 545 Tm#!/textcommand#
ISOLatin1Encoding Test
Hyötyläinen
Tab Test
#!fontsize#15#!/fontsize#

Savera project data2pdf

data2pdf page 7

qqqqqqq qqqqqq qqqqq qqqq qqq qq q
p pp ppp pppp ppppp pppppp ppppppp
#!textcommand#0 0 1 rg#!/textcommand#
Style test
#!b#bold#!/b# normal #!i#italic#!/i# normal
#!bi#bolditalic#!/bi#
#!/text#
#!/page#

In the document part we have selected:
Courier font
A4 paper format (595,842) in landscape mode (842,595)
We have set the author, title, creator, keywords, subject INFO PDF fields.
The background design is a rectangle (re command) with the border black (0
G), large 5 (5 w) and inside gray (.9 g).
The background test (SANFACE Software) is black (0 0 0 rg), with font size 15
and start at 650, 40 (0,0 is the right down angle of the page).
The first page has a rectangle with the border line black (it uses the precedent G
definition), large 3 and inside gray (.5 g).
The text (Project) has e font size 40 and start at point 240,285.
The second page has 5 rectangles with the border line black, large 1 and inside
gray (.3 g). The distance between them is 100.
The vertical tab of the test is set to 50 and start at 50,545
Then we change the font size to 15 and the color of the text to blue (0 0 1 rg).
We mark bold, italic and bolditalic a few word.

PDF 1.3 Reference Manual March 11, 1999 8: Page Descriptions

319

CHAPTER 8

Page Descriptions

This chapter describes the PDF operators that draw text, graphics, and images on
the page and in other “marking contexts” such as forms and patterns. It completes
the specification of PDF. The following chapters describe how to produce efficient
PDF files.

Text, graphics, and images are drawn using the coordinate systems described in
Chapter 3. It may be useful to refer to that chapter when reading the description of
various operators, to obtain a better understanding of the coordinate systems used
in PDF documents and the relationships among them.

Appendix B contains a complete list of operators, arranged alphabetically.

Note Throughout this chapter, PDF operators are shown with a list of the operands they
require. For operators that correspond to one or more PostScript language
operators, the corresponding PostScript language operator appears in bold on the
first line of the operator’s definition. An operand specified as “number” may be
either an integer or a real number. Otherwise, numeric operands must be integers.

8.1 Overview

A PDF page description can be considered a sequence of graphics objects. These
objects generate marks that are applied to the current page, obscuring any existing
marks they may overlay.

PDF provides five types of graphics objects:

• A path object is an arbitrary shape made of straight lines, rectangles, and cubic
curves. A path may intersect itself and may have disconnected sections and
holes. A path object usually includes a painting operator that specifies whether
the path is filled, stroked, and/or serves as a clipping path. A painting operator
is not required, however; unpainted (“invisible”) path objects are sometimes
used as placeholders or to denote text bounds.

• A text object consists of one or more character strings that can be placed
anywhere on the page and in any orientation. Like a path, text can be stroked,
filled, and/or serve as a clipping path.

• An image object consists of a set of samples using a specified color model.
Images can be placed anywhere on a page and in any orientation.

�

8: Page Descriptions March 11, 1999

320 Adobe Systems Inc.

Figure 8.1 Graphics Objects

Path Object

Legal operators:
• Path Segment
• Path Clipping

Text Object

Legal operators:
• General Graphics State
• Color
• Text State
• Text String (Painting)
• Text Positioning
• Marked Content

External Object

Legal operators:
• None

General Graphics State operators: d, gs, i, j, J, M, ri, w
Special Graphics State operators: q, Q, cm
Color operators: g, G, k, K, rg, RG, sc, SC, scn, SCN, cs, CS
Text State operators: TC, Tf, TL, Tr, Ts, Tw, Tz
Text String (Painting) operators: Tj, TJ, ', "
Text Positioning operators: Td, TD, Tm, T*
Path Segment operators: c, h, l, m, re, v, y
Path Painting operators: f, F, f*, n, s, S, b, b*, B, B*
Path Clipping operators: W, W*
Marked Content operators: BMC, BDC, EMC, MP, DP
Shading operator: sh

In-line Image Object

Legal operators:
• ID

Path Segment operators

BT ET

Do, PS

(immediate)

BIEI

Page-Description Level

Legal operators:
• General Graphics State
• Special Graphics State
• Color
• Marked Content

Path Painting operators

Shading Object

Legal operators:
• None

sh

(immediate)

March 11, 1999

8: Page Descriptions 321

• An External Object (XObject) is an object defined outside the stream. The
interpretation of an XObject depends on its type. PDF currently supports three
types of XObjects: images, forms, and PostScript language fragments.

• Ashading object describes a smoth transition of colors across an area on the
page.

As described in Chapter 7, a PDF page description is not necessarily self-
contained. It often contains references to resources such as fonts, patterns, forms,
or images not found within the page description itself but located elsewhere in the
PDF file.

Figure 8.1 shows the ordering rules for the operations that define graphics objects.
Some operations are permitted only in certain graphics objects or in the intervals
between graphics objects, which is called the Page Description Level in the Figure.
Every contents stream begins at the Page Description Level, where changes can be
made to the graphics state, including colors and text-specific parameters, as
explained in the following sections. The arrows indicate the operators that mark
the beginning or end of each of the graphics objects. For example, any Path
Segment operator such as m (moveto) marks the beginning of a Path object. Inside
a Path object, additional Path Segment operators are permitted, as are Path
Clipping operators, but not a General Graphics State operator such as d (setdash),
for example. A Path Painting operator such as f (fill) marks the end of the Path
Object and the return to the Page Description Level.

8.2 Graphics state

The exact effect of drawing a graphics object is determined by parameters such as
the current line thickness, font, and leading. These parameters are part of the
graphics state.

Although the contents of the PDF graphics state are similar to those of the graphics
state in the PostScript language, there are several differences:

1. In PDF, the graphics state is divided into four distinct groups of parameters
and operators. There are specific groups for text, for color, for “generic”
marking operations, and for the graphics state itself. In this chapter, starting
in Figure 8.1, these are referred to as Text State, Color, General Graphics
State, and Special Graphics State operators, respectively. The Text State,
for example, enables the implementation of a more compact set of text
operators.

2. The graphics state is extended to distinguish the parameters for fill
operations from those for stroke operations. The use of separate fill and
stroke colors in PDF is necessary to implement painting operators that both
fill and stroke a path or text.

3. Finally, the graphics state in PDF 1.2 permits user extensions by means of
the Marked Content operators. These have no effect on viewing or printing,
but they preserve information that may be of use to plug-ins.

PDF 1.2

8: Page Descriptions March 11, 1999

322 Adobe Systems Inc.

The graphics state is initialized at the beginning of each page, using the default
values specified in each of the operator descriptions.

8.3 Special Graphics State

The Special Graphics State refers to parameters that apply to all four types of
graphics objects: path, text, image, and external.

PDF provides a graphics state stack for saving and restoring the entire graphics
state: the General Graphics State, the Color, and the Text State. PDF provides an
operator, q, that saves a copy of the graphics state onto the graphics state stack.
Another operator, Q, removes the most recently saved graphics state from the stack
and makes it the current graphics state.

8.3.1 Special Graphics state parameters

8.3.1.1 Clipping path

The clipping path restricts the region to which paint can be applied on a page.
Marks outside the region bounded by the clipping path are not painted. Clipping
paths may be specified either by a path, or by using one of the clipping modes for
text rendering. These are described in Section 8.6.3, “Path clipping operators,” and
Section 8.7.1.7, “Text rendering mode.”

8.3.1.2 Current transformation matrix

The CTM is the matrix specifying the transformation from user space to device
space. It is described in Section 3.2, “User space.”

8.3.1.3 Current point

All drawing on a page makes use of the current point. In an analogy to drawing on
paper, the current point can be thought of as the location of the pen used for
drawing.

The current point must be set before graphics can be drawn on a page. Several of
the operators discussed in Section 8.6.1, “Path segment operators,” set the current
point. As a path object is constructed, the current point is updated in the same way
as a pen moves when drawing graphics on a piece of paper. After the path is
painted using the operators described in Section 8.6.2, “Path painting operators,”
the current point is undefined.

The current point also determines where text is drawn. Each time a text object
begins, the current point is set to the origin of the page’s coordinate system.
Several of the operators described in Section 8.7.3, “Text positioning operators,”
change the current point. The current point is also updated as text is drawn using
the operators described in Section 8.7.5, “Text string operators”.

March 11, 1999 8.3.2

8: Page Descriptions 323

8.3.2 Special Graphics State operators

The operators in this section may be used only at the Page-Description Level; see
Figure 8.1. Adjacent to each PDF operator name is the PostScript language
equivalent operator, if any.

Arguments Operator Semantics

q Saves the current graphics state on the graphics state stack. (gsave)

Q Restores the graphics state to the most recently saved state. Removes the most
recently saved state from the stack and makes it the current state. (grestore)

a b c d e f cm Modifies the CTM by concatenating the specified matrix. Although the operands
specify a matrix, they are passed as six numbers, not as an array. (concat)

8.4 General Graphics state

8.4.1 Flatness

Flatness sets the maximum permitted distance in device pixels between the
mathematically correct path and an approximation constructed from straight line
segments, as shown in Figure 8.2.

Note Flatness is inherently device-dependent, because it is measured in device pixels.

Figure 8.2 Flatness

Arguments Operator Semantics

flatness i Sets the flatness parameter in the graphics state. flatness is a number in the range
0 to 100, inclusive. The default value for flatness is 0, which means that the
device’s default flatness is used. (setflat)

Flatness error
tolerance

8: Page Descriptions March 11, 1999

324 Adobe Systems Inc.

8.4.2 Line cap style

The line cap style specifies the shape to be used at the ends of open subpaths when
they are stroked. Allowed values are shown in Figure 8.3.

Figure 8.3 Line cap styles

Arguments Operator Semantics

linecap J Sets the line cap parameter in the graphics state. linecap has a default value of 0.

8.4.3 Line dash pattern

The line dash pattern controls the pattern of dashes and gaps used to stroke paths.
It is specified by an array and a phase. The array specifies the length of alternating
dashes and gaps. The phase specifies the distance into the dash pattern to start the
dash. Both the elements of the array and the phase are measured in user space
units. Before beginning to stroke a path, the array is cycled through, adding up the
lengths of dashes and gaps. When the sum of dashes and gaps equals the value
specified by the phase, stroking of the path begins, using the array from the point
that has been reached. Figure 8.4 shows examples of line dash patterns. As can be
seen from the figure, the command [] 0 d can be used to restore the dash
pattern to a solid line. (setlinecap)

Line cap
style Description

Butt end caps—the stroke is squared off at the
endpoint of the path.

Round end caps—a semicircular arc with a diameter
equal to the line width is drawn around the endpoint
and filled in.

Projecting square end caps—the stroke extends
beyond the end of the line by a distance which is half
the line width and is squared off.

0

1

2

March 11, 1999 8.4.4

8: Page Descriptions 325

Figure 8.4 Line dash pattern

Dashed lines wrap around curves and corners just as solid stroked lines do. The
ends of each dash are treated with the current line cap style, and corners within
dashes are treated with the current line join style.

Arguments Operator Semantics

[array] phase d Sets the dash pattern parameter in the graphics state. If array is empty, the dash
pattern is a solid, unbroken line; otherwise array is an array of numbers, all non-
negative and at least one non-zero, that specify alternating distances in user space
for the length of dashes and gaps. phase is a number that specifies a distance in
user space into the dash pattern at which to begin marking the path. The default
dash pattern is a solid line. (setdash)

The S (stroke) operator uses the contents of the array of dashes and gaps in a
cyclical fashion; when it reaches the end of the array, it starts again at the
beginning.

When a path consisting of several subpaths is stroked, each subpath is treated
independently—in other words, the dash pattern is restarted and phase is applied
to it at the beginning of each subpath.

8.4.4 Line join style

The line join style specifies the shape to be used at the corners of paths that are
stroked. Figure 8.5 shows the allowed values.

[] 0

[3] 0

[2] 1

[3 5] 6

[2 3] 11

[2 1] 0

Turn dash off–solid line

3 units on, 3 units off, …

1 on, 2 off, 2 on, 2 off, …

2 on, 1 off, 2 on, 1 off, …

2 off, 3 on, 5 off, 3 on, 5 off, …

1 on, 3 off, 2 on, 3 off, 2 on, …

Dash pattern
Array and

phase Description

8: Page Descriptions March 11, 1999

326 Adobe Systems Inc.

Figure 8.5 Line join styles

Arguments Operator Semantics

linejoin j Sets the line join parameter in the graphics state. linejoin has a default value of 0.
(setlinejoin)

8.4.5 Line width

The line width specifies the thickness of the line used to stroke a path and is
measured in user space units. A line width of 0 specifies the thinnest line that can
be rendered on the output device.

Note A line width of 0 is an inherently device-dependent value. Its use is discouraged
because the line may be nearly invisible when printing on high-resolution devices.

Arguments Operator Semantics

linewidth w Sets the line width parameter in the graphics state. linewidth is a number and has a
default value of 1. (setlinewidth)

0

1

2

Line join
style Description

Miter joins —the outer edges of
the strokes for the two segments
are continued until they meet. If
the extension projects too far, as
determined by the miter limit, a
bevel join is used instead.

Round joins—a circular arc with
a diameter equal to the line width
is drawn around the point where
the segments meet and filled in,
producing a rounded corner.

Bevel joins—the two path
segments are drawn with butt
end caps (see the discussion of
line cap style), and the resulting
notch beyond the ends of the
segments is filled in with a
triangle.

March 11, 1999 8.4.6

8: Page Descriptions 327

8.4.6 Miter limit

When two line segments meet at a sharp angle and mitered joins have been
specified as the line join style, it is possible for the miter to extend far beyond the
thickness of the line stroking the path. The miter limit imposes a maximum on the
ratio of the miter length to the line width, as shown in Figure 8.6. When the limit is
exceeded, the join is converted from a miter to a bevel.

The ratio of miter length to line width is directly related to the angle ϕ between the
segments in user space by the formula:

For example, a miter limit of 1.415 converts miters to bevels for ϕ less than 90
degrees, a limit of 2.0 converts miters to bevels for ϕ less than 60 degrees, and a
limit of 10.0 converts miters to bevels for ϕ less than 11 degrees.

Figure 8.6 Miter length

Arguments Operator Semantics

miterlimit M Sets the miter limit parameter in the graphics state. miterlimit is a number that
must be greater than or equal to 1, and has a default value of 10. (setmiterlimit)

8.4.7 Generic Graphics State operator

All the remaining parameters in the General Graphics State are set with the gs
operator, whose operand is an “extended graphics state” dictionary. (See page
272.) Each parameter uses a different keyword in this dictionary.

Note It is expected that any future extensions to the graphics state will also use the gs
operator, with new keywords, rather than new operators.

miter length
line length

----------------------------- 1

ϕ
2

 sin

-----------------=

Miter
length

Line width

ϕ

8: Page Descriptions March 11, 1999

328 Adobe Systems Inc.

Arguments Operator Semantics

name gs Sets the specified device-dependent parameters in the graphics state: stroke
adjustment, overprint, black generation, undercolor removal, transfer function,
halftone, and halftone phase. Parameters that are not specified are not changed.
name is the name of an ExtGState dictionary in the current Resources dictionary.

In PDF 1.3, all the parameters of the General Graphics State, which can be set by
operators described in Sections 8.4.1 through 8.4.6, have equivalent keys in the
ExtGState dictionary. This is intended for use by Type 2 patterns (smooth
shading), which do not have a contents stream.

8.4.8 Stroke adjustment

The stroke adjustment parameter controls whether the line width and the
coordinates of a stroke are automatically adjusted as necessary to produce lines of
uniform thickness. For details, see section 7.5.2, “Automatic Stroke Adjustment,”
of the PostScript Language Reference Manual, Third Edition [1]. The keyword for
stroke adjustment is SA. The default value is true.

8.4.9 Overprint

The overprint parameter is used only when producing separations. It specifies
whether painting on one separation causes the corresponding areas of other
separations to be erased (false) or left unchanged (true). See section 4.8.4, “Special
Color Spaces,” of the PostScript Language Reference Manual, Second Edition [1].

Separate keywords are used for controlling overprint for fill and for stroke. The
keyword OP specifies overprint for stroke; the keyword op specifies overprint for
fill. In an ExtGState dictionary, if OP is specified but op is omitted, then the OP
key applies to both fill and stroke. The default value is false for both OP and op.

The dictionary may also specify an overprint mode with the OPM key. The
overprint mode affects the interpretation of the k and K operators, which set the
color in a 4-component CMYK color space (k for fill, K for stroke). If the
overprint mode is 0 (the default), then a color component of 0 erases (“paints
white”) the current path on the corresponding separation. If the overprint mode is
1, then a color component of 0 leaves the corresponding separation unchanged. For
example, if overprint mode is 1, then the operation .2 .3 0 1 k leaves the
third (yellow) separation unchanged. It has a similar effect to .2 .3 1 sc in a
[/DeviceN [/Cyan /Magenta /Black] …] color space.

8.4.10 Black generation

The black-generation function computes the value of the black component during
conversion from DeviceRGB color space to DeviceCMYK. For additional
information, see section 6.2.3, “Conversion from DeviceRGB to
DeviceCMYK,” of the PostScript Language Reference Manual, Second Edition
[1]. The keyword for black generation is BG.

PDF 1.2PDF 1.2

PDF 1.3

PDF 1.2

PDF 1.2

PDF 1.3

PDF 1.3

PDF 1.2

March 11, 1999 8.4.11

8: Page Descriptions 329

8.4.11 Undercolor removal

The undercolor removal function computes the amount to subtract from the cyan,
magenta, and yellow components during conversion of color values from
DeviceRGB color space to DeviceCMYK. See section 7.2.3, “Conversion from
DeviceRGB to DeviceCMYK,” of the PostScript Language Reference Manual,
Third Edition [1]. The keyword for undercolor removal is UCR.

8.4.12 Transfer function

The transfer function adjusts the values of the gray color component. It is also a
part of some halftone screens. For complete details, see section 6.3, “Transfer
Functions,” of the PostScript Language Reference Manual, Second Edition [1].
The keyword for transfer function is TR.

8.4.13 Halftone

The halftone parameter of the graphics state specifies how halftones should be
produced. See 7.15, “Extended graphics states,” for details about halftones. For
general information on halftones, see section 6.4.3, “Halftone Dictionaries,” of the
PostScript Language Reference Manual, Second Edition [1]. The keyword for
halftone is HT.

8.4.14 Halftone phase

The halftone phase parameters of the graphics state specifies the phase relationship
of halftone cells to the coordinate axes. See section 7.3.3, “Halftone Phase,” of the
PostScript Language Reference Manual, Second Edition [1]. The keyword for
halftone phase is HTP.

8.4.15 Smoothness

This parameter controls the quality of smooth shading (Type 2 patterns and the sh
operator), and thus indirectly controls the rendering performance. Smoothness is
the allowable color error between shading approximated with piecewise linear
interpolation and the true shading of a possibly nonlinear shading function. The
error is measured for each color component, and the maximum error is used. The
allowable error (or tolerance) is specified as a percentage of the range of the color
component. This percentage is expressed as a value from 0 to 1. Thus, a
smoothness parameter of 0.1 represents a tolerance of 10% in each color
component.

Each device may have internal limits on the maximum and minimum tolerances
attainable. For example, setting smoothness to 1 may result in an internal
smoothness of 0.5 on a high-quality color device, and setting smoothness to 0 on
the same device may result in an internal smoothness of 0.01 if an error of that
magnitude is imperceptible on that device.

The smoothness parameter may also interact with the accuracy of color
conversion. In the case of a color conversion defined by a sampled function, the
conversion function is unknown. Thus, the error may be sampled at too low a

PDF 1.2

PDF 1.2

PDF 1.2

PDF 1.2

PDF 1.3

8: Page Descriptions March 11, 1999

330 Adobe Systems Inc.

frequency, in which case, the accuracy defined by the smoothness parameter
cannot be guaranteed. In most cases, however, where the conversion function is
smooth and continuous, the accuracy should be within the specified tolerance.

The effect of the smoothness parameter is similar to that of the flatness parameter.
Note, however, that flatness is measured in device-dependent units of pixel width,
whereas smoothness is measured as a percentage of color component range.

The keyword for smoothness is SM.

8.5 Color

8.5.1 Color parameters

8.5.1.1 Fill color

The fill color is used to paint the interior of paths and text characters that are filled.
Filling is described in Section 8.6.2, “Path painting operators.”

8.5.1.2 Stroke color

The stroke color is used to paint the border of paths and text that are stroked.
Stroking is described in Section 8.6.2, “Path painting operators.”

8.5.1.3 Fill color space

The fill color space is the color space in which the fill color is specified.

8.5.1.4 Stroke color space

The stroke color space is the color space in which the stroke color is specified.

8.5.1.5 Rendering intent

The rendering intent is a name that indicates the style of color rendering that
should occur. See Section 7.13, “XObjects,” and especially Table 7.36, “Color
rendering intents,” for further detail.

8.5.2 Color operators

The operators that set colors and color spaces fall into two classes. Operators in the
first class, which were defined in PDF 1.0, set the color and color space at the same
time, and they include only device-dependent color spaces. Operators in the
second class, which are defined in PDF 1.1, set colors and color spaces separately,
and they apply to all color spaces.

The default color space is DeviceGray, and the default fill and stroke colors are
both black.

PDF 1.1

PDF 1.1

PDF 1.1

�

PDF 1.1

March 11, 1999 8.5.2

8: Page Descriptions 331

Color operators may appear inside Text Objects or at the Page-Description Level.
See Figure 8.1.

8.5.2.1 Device-dependent color space operators

Arguments Operator Semantics

gray g Sets the color space to DeviceGray (or the DefaultGray color space, see Section
7.12.12 on page 245), and sets the gray tint to use for filling paths. gray is a
number between 0 (black) and 1 (white). (setgray (fill))

gray G Sets the color space to DeviceGray (or the DefaultGray color space, see Section
7.12.12 on page 245), and sets the gray tint to use for stroking paths. gray is a
number between 0 (black) and 1 (white). (setgray (stroke))

r g b rg Sets the color space to DeviceRGB (or the DefaultRGB color space, see Section
7.12.12 on page 245), and sets the color to use for filling paths. Each operand must
be a number between 0 (minimum intensity) and 1 (maximum intensity).
(setrgbcolor (fill))

r g b RG Sets the color space to DeviceRGB (or the DefaultCMYK color space, see
Section 7.12.12 on page 245), and sets the color to use for stroking paths. Each
operand must be a number between 0 (minimum intensity) and 1 (maximum
intensity). (setrgbcolor (stroke))

c m y k k Sets the color space to DeviceCMYK (or the DefaultCMYK color space, see
Section 7.12.12 on page 245), and sets the color to use for filling paths. Each
operand must be a number between 0 (no ink) and 1 (maximum ink). The behavior
of the k operator is affected by the overprint mode; see Section 8.4.9 on page 328.
(setcmykcolor (fill))

c m y k K Sets the color space to DeviceCMYK (or the DefaultRGB color space, see
Section 7.12.12 on page 245), and sets the color to use for stroking paths. Each
operand must be a number between 0 (no ink) and 1 (maximum ink). The behavior
of the K operator is affected by the overprint mode; see Section 8.4.9 on page 328.
(setcmykcolor (stroke))

8.5.2.2 Generic color space operators

Arguments Operator Semantics

colorspace cs Sets the color space to use for filling paths. colorspace must be a name. If the
color space is specified by a name (the device-dependent color spaces
DeviceGray, DeviceRGB, and DeviceCMYK; or the Pattern color space for
colored tiling patterns or shading patterns), then that name may be used. If it is
specified by an array (all other color spaces), then colorspace must be a name
defined in the current Resources dictionary. (setcolorspace (fill))

PDF 1.1

8: Page Descriptions March 11, 1999

332 Adobe Systems Inc.

For example, the following expression is illegal:

[/CalGray dict] cs

Instead, one would write

/CS42 cs

and the Resources dictionary would contain

/CS42 [/CalGray dict]

The cs operator also sets the current fill-color to its initial value, which depends on
the color space. For the device-dependent, calibrated, and ICCBased color
spaces, the initial color is black. For a Lab color space, the initial value is specified
by the minimum Range values. For an Indexed color space, the initial value is 0.
The initial value in a Separation color space is 1, and the initial color value in a
Pattern color space is a pattern that has an empty stream of marking operators,
thus producing no marks on the page.

Arguments Operator Semantics

colorspace CS Same as cs, but for strokes. (setcolorspace (stroke))

c1 c2 c3 c4 sc Sets the color to use for filling paths. The number of operands required and their
interpretation is based on the current fill color space. For DeviceGray, CalGray,
and Indexed color spaces, one operand is required. For DeviceRGB, CalRGB,
and Lab color spaces, three operands are required. For DeviceCMYK and
CalCMYK, four operands are required. (setcolor (fill))

c1 c2 c3 c4 SC Same as sc, but for stroking paths. (setcolor (stroke))

c1 … cn scn
c1 … cn name scn scn accepts the same parameters, and has the same effect, as sc. In addition, it

supports Pattern, Separation, ICCBased, and DeviceN colors. (setcolor (fill
for patterns))

If the current fill color space is a Pattern color space, then scn sets the pattern to
use for filling paths. name is the name of a Pattern resource in the current
Resources dictionary. If the pattern is uncolored (if PatternType is 1 and
PaintType is 2), then the color is determined by the component values c1 … cn in

the underlying color space. If the pattern is colored (if PatternType is 1 and
PaintType is 1), or if it a shading pattern (if PatternType is 2), then the
component values must not be specified.

If the current fill color space is a Separation color space, then scn sets the tint
for filling paths to c1, which is a number in the range 0 to 1 that represents the

amount of colorant to be applied.

If the current fill color space is an ICCBased color space, then scn sets the color
values for filling paths to c1 … cn, which are numbers in the range 0 to 1.

PDF 1.2

�

PDF 1.3

March 11, 1999 8.5.2

8: Page Descriptions 333

If the current fill color space is a DeviceN color space, then scn sets the tints for
filling paths to c1 … cn, which are numbers in the range 0 to 1 that represents the

amount of each colorant to be applied. (setcolor (fill))

c1 … cn SCN
c1 … cn name SCN Same as scn, but for strokes. (setcolor (stroke))

8.5.2.3 Color rendering intent

Arguments Operator Semantics

intent ri Sets the color rendering intent in the graphics state.

intent is a name of a color rendering intent, which indicates the style of color
rendering that should occur, as described in Table 7.36 on page 252.

8.6 Paths

Paths are used to represent lines, curves, and regions. A path consists of a series of
path segment operators describing where marks are to appear on the page,
followed by a path painting operator, which actually marks the path in one of
several ways. A path may be composed of one or more disconnected sections,
referred to as subpaths. An example of a path with two subpaths is a path
containing two parallel line segments.

Path segments may be straight lines or curves. Curves in PDF files are represented
as cubic Bézier curves. A cubic Bézier curve is specified by the x- and y-
coordinates of four points: the two endpoints of the curve (the current point, P0,
and the final point, P3) and two control points (points P1 and P2), as shown in
Figure 8.7.

PDF 1.3

PDF 1.2

PDF 1.1

8: Page Descriptions March 11, 1999

334 Adobe Systems Inc.

Once these four points are specified, the cubic Bézier curve R(t) is generated by
varying the parameter t from 0 to 1 in the following equation:

In this equation, P0 is the current point before the curve is drawn. When the
parameter t has the value 0, R(t) = P0 (the current point). When t = 1, R(t) = P3. The
curve does not, in general, pass through the two control points P1 and P2.

Bézier curves have two desirable properties. First, the curve is contained within the
convex hull of the control points. The convex hull is most easily visualized as the
polygon obtained by stretching a rubber band around the outside of the four points
defining the curve. This property allows rapid testing of whether the curve is
completely outside the visible region, and so does not have to be rendered. Second,
Bézier curves can be very quickly split into smaller pieces for rapid rendering.

Note In the remainder of this book, the term Bézier curve means cubic Bézier curve.

Paths are subject to and may also be used for clipping. Path clipping operators
replace the current clipping path with the intersection of the current clipping path
and the current path.

<path> ::= <subpath>+
[path clipping operator]
<path painting operator>

<subpath> ::= m <path segment operator except m and re>* |
re

8.6.1 Path segment operators

All operands are numbers that are coordinates in user space.

P1 (x1, y1)
P2 (x2, y2)

P3 (x3, y3)

P0 (current point)

Figure 8.7 Bézier curve

x1 y1 x2 y2 x3 y3 c

R t() 1 t–()3
P0 3t 1 t–()2

P1 3t
2

1 t–()P2 t
3
P3+ + +=

March 11, 1999 8.6.1

8: Page Descriptions 335

Arguments Operator Semantics

x y m Moves the current point to (x, y), omitting any connecting line segment. (moveto)

x y l (operator is lowercase L) Appends a straight line segment from the current point to
(x, y). The new current point is (x, y). (lineto)

x1 y1 x2 y2 x3 y3 c Appends a Bézier curve to the path. The curve extends from the current point to
(x3, y3) using (x1, y1) and (x2, y2) as the Bézier control points, as shown in Figure
8.7. The new current point is (x3, y3). (curveto)

x2 y2 x3 y3 v Appends a Bézier curve to the current path between the current point and the point
(x3, y3) using the current point and (x2, y2) as the Bézier control points, as shown
in Figure 8.8. The new current point is (x3, y3). (curveto (first control point
coincides with initial point on curve))

Figure 8.8 v operator

x1 y1 x3 y3 y Appends a Bézier curve to the current path between the current point and the point
(x3, y3) using (x1, y1) and (x3, y3) as the Bézier control points, as shown in Figure
8.9. The new current point is (x3, y3). (curveto (second control point coincides
with final point on curve))

Current point

(x2, y2)

(x3, y3)

x2 y2 x3 y3 v

8: Page Descriptions March 11, 1999

336 Adobe Systems Inc.

Figure 8.9 y operator

x y width height re Adds a rectangle to the current path.

width and height are distances in user space. The operation

x y width height re

is defined to have the same effect as the sequence

x y m

x+width y l

x+width y+height l

x y+height l

h

h Closes the current subpath by appending a straight line segment from the current
point to the starting point of the subpath. (closepath)

8.6.2 Path painting operators

Paths may be stroked and/or filled. As in the PostScript language, painting
completely obscures any marks already on the page under the region that is
painted.

Stroking draws a line along the path, using the line width, dash pattern, miter limit,
line cap style, line join style, stroke color, stroke color space, and stroke
adjustment from the graphics state. The line drawn when a path is stroked is
centered on the path. If a path consists of multiple subpaths, each is treated
separately.

The process of filling a path paints the entire region enclosed by the path, using the
fill color and fill color space. If a path consists of several disconnected subpaths,
each is filled separately. Any open subpaths are implicitly closed before being
filled. Closing is accomplished by adding a segment between the first and last

Current point

(x1, y1)

(x3, y3)

x1 y1 x3 y3 y

March 11, 1999 8.6.2

8: Page Descriptions 337

points on the path. For a simple path, it is clear what lies inside the path and should
be painted by a fill. For more complicated paths, it is not so obvious. One of two
rules is used to determine which points lie inside a path.

The non-zero winding number rule uses the following test to determine whether a
given point is inside a path and should be painted. Conceptually, a ray is drawn in
any direction from the point in question to infinity, and the points where the ray
crosses path segments are examined. Starting from a count of zero, add one to the
count each time a path segment crosses the ray from left to right, and subtract one
from the count each time a path segment crosses the ray from right to left. If the
ray encounters a path segment that coincides with it, the result is undefined. In this
case, a ray in another direction can be picked, since all rays are equivalent. After
counting all the crossings, if the result is zero then the point is outside the path.
The effect of using this rule on various paths is illustrated in Figure 8.10. The non-
zero winding number rule is used by the PostScript language fill operator.

Figure 8.10 Non-zero winding number rule

The even–odd rule uses a slightly different strategy. The same calculation is made
as for the non-zero winding number rule, but instead of testing for a result of zero,
a test is made as to whether the result is even or odd. If the result is odd, the point
is inside the path; if the result is even, the point is outside. The result of applying
this rule to various paths is illustrated in Figure 8.11. The even–odd rule is used by
the PostScript language eofill operator.

Figure 8.11 Even–odd rule

8: Page Descriptions March 11, 1999

338 Adobe Systems Inc.

Arguments Operator Semantics

n Ends the path without filling or stroking it. This is a “path painting no-op,”
primarily used with a path clipping operator (see Section 8.6.3, “Path clipping
operators), but like the other path painting operators, it terminates a Path Object.
(newpath)

S Strokes the path. (stroke)

s Similar to the S operator, but closes the path before stroking it. (closepath and
stroke) s has the same effect as h S.

f Fills the path, using the non-zero winding number rule to determine the region to
fill. (fill)

F Same as the f operator. Included only for compatibility. Although applications that
read PDF files must be able to accept this operator, applications that generate PDF
files should use the f operator instead. (fill)

f* Fills the path, using the even–odd rule to determine the region to fill. (eofill)

B fill and stroke. B has the same effect as q f Q S.

b closepath, fill, and stroke. b has the same effect as h B.

B* eofill and stroke. B* has the same effect as q f* Q S.

b* closepath, eofill, and stroke. b* has the same effect as h B*.

name sh When a path that is to be filled with a gradient (see Section 7.17 on page 287) has
the same geometry as the gradient itself, it is not necessary to define the gradient as
a Type 2 pattern, define the path separately, and then use the f (fill) operator.
Instead, one may use the sh operator to paint the same area. (shfill)

name is the name of a Shading dictionary in the current Resources dictionary. (If
its ShadingType is greater than 3, this dictionary is part of a stream.) All
coordinates in the Shading dictionary are interpreted relative to the current user
space. (When a Shading dictionary is used in a pattern, the coordinates are
expressed in pattern space.)

8.6.3 Path clipping operators

Path clipping operators cause the current clipping path to be replaced with the
intersection of the current clipping path and the path. A path is made into a
clipping path by inserting a path clipping operator (W or W*) between the last path
segment operator and the path painting operator.

Although the path clipping operator appears before the path painting operator, the
path clipping operator does not alter the clipping path at the point it appears.
Rather, it modifies the effect of the path painting operator. After the path is filled,

PDF 1.3

March 11, 1999 8.7.1

8: Page Descriptions 339

stroked, or ended by the path painting operator, it is set to be the current clipping
path. If the path is both filled and stroked, the painting is done in that order before
making the path the current clipping path.

The definition of the clipping path and all subsequent operations it is to affect
should be contained between a pair of q and Q operators. Execution of the Q
operator causes the clipping path to revert to that saved by the q operator, before
the clipping path was modified.

Arguments Operator Semantics

W Uses the non-zero winding number rule to determine which regions are inside the
clipping path. (clip)

W* Uses the even–odd rule to determine which regions are inside the clipping path.
(eoclip)

8.7 Text state

The text state is composed of those graphics state parameters that affect only text.

8.7.1 Text State parameters and operators

There are nine parameters in the text state, each of which can be set individually:

1. Tc is the character spacing parameter.

2. Tw is the word spacing parameter.

3. Th is the horizontal spacing parameter.

4. Tl is the “leading” parameter.

5. Tf is the text font.

6. Tfs is the text font size.

7. Tm is the text matrix.

8. Tmode is the rendering mode.

9. Trise is the “text rise”.

There are two additional parameters of the text state:

1. TLM is the matrix for the current text line.

2. TRM is the rendering matrix.

8: Page Descriptions March 11, 1999

340 Adobe Systems Inc.

Each of the items in the text state is described in the following sections.

Note Section 8.7.4, “Text rendering,” describes how these parameters are used, and
their exact effects on the text state.

Note These operators can appear outside of text objects, and the values they set are
retained across text objects on a single page. Like other graphics state parameters,
the values are initialized to the default values at the beginning of each page.

8.7.1.1 Character spacing

The character spacing parameter, Tc, is a number specified in text space units. It is
added to the displacement between the origin of one character and the origin of the
next. See Figure 7.3 on page 209 for examples of character origins and
displacements. In the default coordinate system, the positive direction of the x-axis
points to the right, and the positive direction of the y-axis points upward. So for
horizontal writing, a positive value of Tc has the effect of expanding the space
between characters; see Figure 8.12. For vertical writing, however, a negative
value of Tc has the effect of expanding the space between characters.

Figure 8.12 Character spacing for horizontal writing

Character spacing is applied to each glyph in the string, regardless of the number
of bytes used for that glyph’s character code. Therefore character spacing is used
even with fonts that have multi-byte encodings.

Arguments Operator Semantics

charSpace Tc Set character spacing

Sets Tc to charSpace. Character spacing is used, together with word spacing, by

the Tj, TJ, and ' operators. charSpace is a number expressed in text space units
and has an initial value of 0.

8.7.1.2 Word spacing

The word spacing parameter, Tw, is a number specified in text space units. It works
in the same way as character spacing, but applies only to the space character, <20>.
Tw is added to the displacement between the origin of the space character and the
origin of the following character. For horizontal writing, a positive value for Tw has
the effect of increasing the spacing between words. For vertical writing, a positive

Character 0 (default)

C h a r a c t e r 0.25

March 11, 1999 8.7.1

8: Page Descriptions 341

value for Tw decreases the space between words, since the positive direction of the
y-axis points upward; therefore a negative value will increase the space between
words. Figure 8.13 illustrates the effect of word spacing in horizontal writing.

Figure 8.13 Effect of word spacing in horizontal writing

Word spacing is applied to every instance of the single byte <20> in a string.
Therefore word spacing is not used with fonts that have only multi-byte encodings
or with fonts whose encodings do not use the single byte <20> as the space
character.

Arguments Operator Semantics

wordSpace Tw Set word spacing

Sets Tw to wordSpace. Word spacing is used by the Tj, TJ, and ' operators.
wordSpace is a number expressed in text space units and has an initial value of 0.

8.7.1.3 Horizontal scaling

The horizontal scaling parameter, Th, adjusts the width of characters by stretching
or shrinking them in the horizontal direction. The scaling is specified as a percent
of the normal width of the characters, with 100 being the normal width. Figure
8.14 shows the effect of horizontal scaling. The scaling always applies to the x
coordinate, independent of the writing mode.

Figure 8.14 Horizontal scaling

Arguments Operator Semantics

scale Tz Set horizontal scaling

Word Space 0 (default)

Word Space 2.5

Word
WordWord

100 (default)

50

8: Page Descriptions March 11, 1999

342 Adobe Systems Inc.

Sets Th to (scale ÷ 100). scale is a number expressed in percent of the normal
scaling and has an initial value of 100.

8.7.1.4 Leading

The leading parameter, Tl, is measured in text space units. It specifies the vertical
distance between the baselines of adjacent lines of text, as shown in Figure 8.15.
The leading parameter is used by the TD, T*, ', and " operators; it is independent of
the writing mode.

Figure 8.15 Leading

Arguments Operator Semantics

leading TL Set text leading

Sets Tl to leading. The TL operator need not be used in a PDF file unless the T*, ',
or " operators are used. leading has an initial value of 0.

8.7.1.5 Text font and size

Arguments Operator Semantics

fontname size Tf Set font and size

Sets Tf to fontname and Tfs to size. There is no initial value for either fontname
or size; they must be specified using Tf before drawing any text. fontname is the
name of a Font in the current Resources dictionary. size is a number expressed in
text space units.

8.7.1.6 Text matrix

The text matrix specifies the transformation from text space (see Section 3.3, “Text
space”) to user space. The text matrix is set with the Tm operator (see page 345).

This is 12 point text with
14.5 point leading

Leading

March 11, 1999 8.7.1

8: Page Descriptions 343

8.7.1.7 Text rendering mode

Determines whether text is stroked, filled, or used as a clipping path.

Note The text rendering mode has no effect on text displayed using a Type 3 font.

The rendering modes are shown in Figure 8.16. In the figure, a stroke color of
black and a fill color of light gray are used. After one of the clipping modes is used
for text rendering, the text object must be ended using the ET operator before
changing the text rendering mode.

Note For the clipping modes (4–7), a series of lines has been drawn through the
characters in Figure 8.16 to show where the clipping occurs.

Figure 8.16 Text rendering modes

Arguments Operator Semantics

render Tr Set the text rendering mode.

R
R
R

1

2

3

0

4

5

6

7

Rendering
mode Description

Fill text

Stroke text

Fill then stroke text

Text with no fill and no stroke (invisible)

Fill text and add it to the clipping path

Stroke text and add it to the clipping path

Fill then stroke text and add it to the clipping path

Add text to the clipping path

8: Page Descriptions March 11, 1999

344 Adobe Systems Inc.

Sets Tmode to render, which is an integer and has an initial value of 0.

8.7.1.8 Text rise

Text rise specifies the amount, in text space units, to move the baseline up or down
from its default location. Positive values of text rise move the baseline up.
Adjustments to the baseline are useful for drawing superscripts or subscripts. The
default location of the baseline can be restored by setting the text rise to 0. Figure
8.17 illustrates the effect of the text rise, which is set using the Ts operator. Text
rise always applies to the y coordinate, regardless of the writing mode.

Figure 8.17 Text rise

Arguments Operator Semantics

rise Ts Set text rise.

Sets Trise to rise, which is a number expressed in text space units and has an initial

value of 0.

8.7.2 Text Object operators

A PDF text object consists of operators that specify character strings, movement of
the current point, and text state. A text object begins with the BT operator and ends
with the ET operator. See Figure 8.1 on page 320.

<text object> ::= BT
<text operator or graphics state operator>*
ET

When BT is encountered, the text matrix is initialized to the identity matrix. When
ET is encountered, the text matrix is discarded. Text objects cannot be nested—a
second BT cannot appear before an ET.

This text is superscripted (This text is) Tj 5 Ts (superscripted) Tj

(This) Tj –5 Ts (text) Tj 5 Ts
(moves) Tj 0 Ts (around) Tj

(This text is) Tj –5 Ts (subscripted) Tj

This text
moves around

This text is subscripted

March 11, 1999 8.7.3

8: Page Descriptions 345

Note If a page does not contain any text, no text operators (including operators that
merely set the text state) may be present in the page description.

Arguments Operator Semantics

BT Begins a Text Object. Initializes the text matrix, Tm, and the line matrix, TLM, to
the identity matrix.

ET Ends a Text Object. Discards the text matrix.

8.7.3 Text positioning operators

A text object keeps track of the current point and the start of the current line. The
text string operators move the current point as the various forms of the PostScript
language show operator do. Operators that move the start of the current line move
the current point as well.

Note These operators may appear only within text objects. See Figure 8.1 on page 320.

Arguments Operator Semantics

tx ty Td Moves to the start of the next line, offset from the start of the current line by (tx, ty).
tx and ty are numbers expressed in text space units. More precisely, Td performs
the following assignments:

tx ty TD Moves to the start of the next line, offset from the start of the current line by (tx, ty).
As a side effect, this sets the leading parameter in the text state.

tx ty TD is defined to have the same effect as -ty TL tx ty Td

a b c d x y Tm Sets the text matrix, Tm, and the text line matrix, TLM. It also sets the current point

and line start position to the origin. Tm performs the following assignments:

The operands are all numbers, and the initial value for Tm and TLM is the identity

matrix, [1 0 0 1 0 0]. Although the operands specify a matrix, they are
passed to Tm as six numbers, not as an array.

Tm TLM

1 0 0

0 1 0

tx ty 1

TLM×= =

Tm TLM

a b 0

c d 0

x y 1

= =

8: Page Descriptions March 11, 1999

346 Adobe Systems Inc.

The matrix specified by the operands passed to the Tm operator is not
concatenated onto the current text matrix, but replaces it.

T* Moves to the start of the next line.

T* is defined to have the same effect as 0 Tl Td

where Tl is the leading parameter of the text state.

8.7.4 Text rendering

Before text is rendered by the Tj or TJ operator, it is placed and transformed
according to the parameters in the text state. The rendering matrix for the text is
computed as follows:

The current text matrix, Tm, is translated by the text rise, Trise. Next, that is scaled
by the font size, Tfs, and the horizontal text scale, Th. Finally, that is concatenated
to the current transformation matrix in the graphics state (CTM) to produce the
rendering matrix, TRM:

This calculation occurs, in effect, whenever any of the text parameters change,
before Tj or TJ occur. When text is rendered, the text line matrix, TLM, is
unaffected, but the text matrix, Tm, is translated by the origin-displacement of the
text, which affects subsequent rendering operations, as shown above. For
horizontal-mode writing, the origin-displacement is along the x axis; for vertical
writing (see Section 7.7.8 on page 208), the displacement is along the y axis.

8.7.5 Text string operators

These operators draw text on the page. Although it is possible to pass individual
characters to the text string operators, text searching performs significantly better
if the text is grouped by word and paragraph.

PDF supports the same conventions as the PostScript language for specifying non-
printable ASCII characters. That is, a character can be represented by an escape
sequence, as described in Table 4.1 on page 38.

Note The default current point is at the page origin. Therefore, unless some prior
operation in the same text object changes the current point, the text will appear at
the origin. It is suggested that a Tm operation be used to establish the initial
current point in a text object at the position in text space where initial text is to
appear. Subsequent text operations may change the current point.

TRM

Tfs Th× 0 0

0 Tfs 0

0 Trise 1

Tm CTM××=

March 11, 1999 8.7.5

8: Page Descriptions 347

Arguments Operator Semantics

string Tj Shows text string, using the character and word spacing parameters from the text
state. (show)

string ' Moves to next line and shows text string, using the character and word spacing
parameters from the text state. (show)

string ' is defined to have the same effect as T* string Tj

aw ac string " Moves to next line and shows text string. aw and ac are numbers expressed in text
space units. aw specifies the additional space width, and ac specifies the additional
space between characters. (show)

aw ac string " is defined to have the same effect as aw Tw ac Tc string '

Note The values specified by aw and ac remain the word and character spacings after
the " operator is executed.

[number or string …] TJ Shows text string, allowing individual character positioning, and using the
character and word spacing parameters from the text state. (show with
displacements)

For each element of the array, if the element is a string, TJ shows the string. If it is
a number, it is expressed in thousandths of an em. (An em is a typographic unit of
measurement equal to the size of a font. For example, in a 12-point font, an em is
12 points.) TJ subtracts this amount from the current x coordinate in horizontal
writing mode, or from the current y coordinate in vertical writing mode. In the
normal case of horizontal writing in the default coordinate system, this has the
effect of moving the current point to the left by the given amount.

Each character is first justified according to any character and word spacing
settings made with the Tc, Tw, or " operators, and then any numeric offset present
in the array passed to the TJ operator is applied. An example of the use of TJ is
shown in Figure 8.18.

Figure 8.18 Operation of TJ operator in horizontal writing

�

[(AWAY again)] TJAWAY again
[(A) 120 (W) 120 (A) 95 (Y again)] TJAWAY again

8: Page Descriptions March 11, 1999

348 Adobe Systems Inc.

8.7.6 Text strings in multi-byte fonts

The text string operators can be used with any string. For strings that use multi-
byte encodings, the high-order byte of a character code must appear first. The
strings must conform to the syntax for string objects. Therefore care must be taken
when including multi-byte character codes. These codes may contain single-byte
values that are the same as the ASCII characters for left parenthesis (<28>), right
parenthesis (<29>), and backslash (<5C>). When a string is written by enclosing
the data in parentheses, these bytes must be preceded by the backslash character.
All other byte values between <00> and <FF> may be used in a string object.

8.8 External objects (XObjects)

PDF defines three types of XObjects: Image XObjects, Form XObjects, and
PostScript XObjects.

8.8.1 XObject operators

The Do operator permits the execution of an arbitrary object whose data is
encapsulated within a PDF object. The currently defined XObjects are images and
PostScript language forms, discussed in Section 7.13, “XObjects.”

Arguments Operator Semantics

xobject Do Executes the specified XObject. xobject must be the name of an Image, Form, or
PostScript XObject in the current Resources dictionary. See Section 7.13,
“XObjects.

string PS The PS operator provides an in-line equivalent to a PostScript XObject. The PS
operator has one argument, a string. When a PS operator is encountered while a
document is being printed to a PostScript printer, the contents of the string are
placed into the PostScript output as the argument of an instance of the PostScript
operator exec. This string is copied without interpretation and may include
PostScript comments. In any other case, the PS operator has no other effect. See
Section 7.13.8 on page 257 for additional information.

8.9 In-line image objects

In addition to the Image XObject described in Section 7.13, “XObjects,” PDF
supports in-line images. An in-line Image Object consists of the operator BI,
followed by Image XObject key–value pairs, followed by the operator ID, followed
by the image data, followed by EI:

<in-line image> ::=
BI
<Image XObject key–value pairs>

PDF 1.2

PDF 1.1

�

March 11, 1999 8.8.1

8: Page Descriptions 349

ID
<lines of data>*
EI

Note If an in-line image does not use ASCIIHexDecode or ASCII85Decode as one
of its filters, ID should be followed by a single space. The character following the
space is interpreted as the first byte of image data.

Image data may be encoded using any of the standard PDF filters. The key–value
pairs provided in an in-line image should not include keys specific to resources:
Type, Subtype, and Name. Within in-line images, the standard key names may
be replaced by the shorter names listed in Table 8.1. These abbreviations may not
be used in Image XObjects, however.

Table 8.1 Abbreviations for in-line image names

Name Abbreviated name

ASCIIHexDecode AHx

ASCII85Decode A85

BitsPerComponent BPC

CCITTFaxDecode CCF

ColorSpace CS

DCTDecode DCT

Decode D

DecodeParms DP

DeviceCMYK CMYK

DeviceGray G

DeviceRGB RGB

Filter F

FlateDecode Fl

Height H

ImageMask IM

Indexed I

Intent no abbreviation

Interpolate I

LZWDecode LZW

RunLengthDecode RL

Width W

PDF 1.2

PDF 1.1

8: Page Descriptions March 11, 1999

350 Adobe Systems Inc.

Note The in-line format should be used only for small images (4K or less) because
viewer applications have less flexibility when managing in-line image data.

In-line images, like Image XObjects, are one unit wide and one unit high in user
space and drawn at the origin. Images are sized and positioned by transforming
user space using the cm operator.

Arguments Operator Semantics

BI Begins image

ID Begins image data

EI Ends image

The value of the CS or ColorSpace key may be a device-dependent color space
(DeviceGray, DeviceRGB, or DeviceCMYK, or its abbreviation from the
preceding table). The value may not be a device-independent color space or a
special color space, with the exception of a limited form of the Indexed color
space, which may be written as

[/Indexed base hival lookup]

where base is a device-dependent color space and lookup is a string; see Section
7.12.10, “Indexed color spaces.” The name /Indexed may be abbreviated as /I.

In PDF 1.2, the value may also be the name of a color space in the current
Resources dictionary. In this case, any color space that may be used with an Image
XObject may be used for the in-line image (see Section 7.13.1, “Images”).

Example 8.1 shows a 17×17 sample in-line image. The image has 8 bits per
component; it is an RGB image that has been LZW and ASCII85 encoded. The
cm operator has been used to scale the image to render at a size of 17×17 user
space units and to be located at an x-coordinate of 298 and a y-coordinate of 388.
The q and Q operators limit the scope of the cm operator’s effect to resizing the
image.

Example 8.1 In-line image

q

17 0 0 17 298 388 cm

BI

/W 17

/H 17

/BPC 8

/CS /RGB

/F [/A85 /LZW]

ID

J1/gKA>.]AN&J?]-<HW]aRVcg*bb.\eKAdVV%/PcZ

… omitted data …

March 11, 1999 8.10.1

8: Page Descriptions 351

R.s(4KE3&d&7hb*7[%Ct2HCqC~>

EI

Q

8.10 Other operators

8.10.1 Type 3 font operators

Type 3 font operators can be used only within the character definitions inside a
Type 3 font. Each Type 3 font definition must begin with either a d0 or d1
operator. See Section 5.7 of the PostScript Language Reference Manual, Third
Edition [1] for details.

Arguments Operator Semantics

wx wy d0 (d zero) setcharwidth

The operands are both numbers.

wx wy llx lly urx ury d1 (d one) setcachedevice

The operands are all numbers.

8.10.2 Compatibility operators

PDF does not specify a viewer’s behavior when it encounters an undefined page
description operator. However, Appendix G does describe the behavior of the
Adobe Acrobat viewers. An Acrobat viewer usually alerts the user when it
encounters an undefined page description operator. The operators below modify
this behavior.

Arguments Operator Semantics

BX This operator directs a viewer to not report any undefined operators until a
matching EX is encountered. (BX–EX pairs may nest.)

EX This operator ends a section of page description in which undefined operators
should not be reported.

8.10.3 Marked Content operators

The Marked Content operators are used in page descriptions such as the Contents
stream of a page to indicate a part of the stream that may be significant to an
application other than a strict PDF consumer, such as a PDF Viewer. The content

PDF 1.1

�

PDF 1.2

8: Page Descriptions March 11, 1999

352 Adobe Systems Inc.

that is marked is not a sequence of bytes in the stream, but a sequence of graphics
objects. Each graphics object is fully qualified by the graphics state in which it is
rendered.

For example, a graphics application might use these operators to indicate that a
certain set of objects constitute a “group.” A text-processing application might use
them to maintain a connection between a footnote number in the running text and
the footnote itself at the bottom of the page.

There are two kinds of marks, those that bracket a sequence of objects, and those
that mark a place in the stream. Bracketed sequences begin with either BMC or
BDC, and they end with EMC. BDC has the same effect as BMC but includes a
property list as additional information. Places are marked with either MP or DP.
DP has the same effect as MP but, like BDC, includes a property list.

These operators may appear only between graphics objects; they may not occur
within a graphics object nor between a graphics state operator and its operands.
See Figure 8.1 on page 320.

Bracketed sequences may be nested within each other. A bracketed sequence must
be entirely contained within a single stream; it may not cross page boundaries, for
example. (The Contents key of a Page object is permitted to be either a stream or
an array of streams; such an array is considered to be a single stream.)

When Marked Content is used with text, the begin-end Marked Content operators
(BMC/BDC and EMC) and the begin-end text operators (BT and ET) must be
properly (separately) nested. That is, the sequence BMC BT … EMC ET is illegal,
as is BT BMC … ET EMC. The sequence BMC BT … ET EMC is legal, as is the
sequence BT BMC … EMC ET.

The BMC and MP operators have only one operand, a tag which indicates the role
of the operator. The BDC and DP operators have an additional operand, a list of
properties that are associated with the mark and whose interpretation is relative to
the tag. The properties are represented by a dictionary. This dictionary may be
written inline in the content stream if all its values are direct objects. If any value is
an indirect object (referring to an object outside the stream), then the list is
specified by the name of a Property List in the current Resources dictionary. (See
page 313.)

With the exception of the Subtype key, PDF makes no assumptions about the
properties; interpretation of this dictionary is up to the application or PDF
extension that placed the content markers in the stream. It is suggested, however,
that any particular extension use keys in a consistent way and always use the same
type (or small set of types) for the values of a particular key.

The tags that are associated with marks must be registered (see Appendix F) to
prevent conflicting usage when more than one application may be marking a
particular content stream. The components of the name, including the registered
prefix, must be separated by a single period, and the tag may not begin with a
period.

March 11, 1999 8.10.3

8: Page Descriptions 353

Arguments Operator Semantics

tag BMC Begin marked content. BMC indicates the beginning of a sequence of graphics
objects that is “marked” in some way. tag must be a name; it should indicate the
role of the content that is marked.

tag properties BDC Begin marked content with a property list. BDC indicates the beginning of a
sequence of graphics objects that is “marked” in some way. tag must be a name; it
should indicate the role of the content that is marked. properties is either an inline
dictionary, that is, a direct object dictionary in the content stream, or it is the name
of a property list in the current Resources dictionary.

EMC End marked content. EMC indicates the end of a marked sequence of graphics
objects. Sequences may be nested.

tag MP Mark a point in the content. MP indicates a place within the sequence of graphics
objects that is “marked.” MP is not intended for use when some subsequence of
the content is being marked: BMC and EMC should be used when the beginning
and end of a subsequence is to be indicated. tag must be a name; it should indicate
the role of the place that is marked.

tag properties DP Mark a point in the content and include a property list. DP is similar to MP, but
includes a property list, as BDC does.

Marked content and clipping

When Marked Content is used to bracket a path or text clip object, then additional
restrictions apply. Apath object may or may not include a clip, and it may or may
not be painted; the same is true of text objects. A “clip object” is either an
unpainted, clipped path object (defined by a sequence including a path segment
operator, a clip operator, followed by the n operator) or an unpainted, clipped text
object (defined by a sequence in which text is painted in text-rendering mode 7). If
a Marked Content includes only clip objects, then the Marked Content applies to
those objects. Otherwise, Marked Content does not apply to clip objects.

Nesting of clip objects within Marked Content is allowed. For example, if multiple
lines of text are used to mask an image, each line of text may be bracketed by
Marked Content, and, the lines of bracketed text may be bracketed by an outer
Marked Content. An empty Marked Content within a clip Marked Content is
considered to be a nested within the clip Marked Content. An additional restriction
is that the save and restore operators (q and Q) may not occur within Marked
Content that is used to bracket clip objects.

The precise rules for determining whether a Marked Content applies to a clip
object are as follows:

1. If the only objects within a Marked Content are clip objects, then the
Marked Content applies to those clip objects.

2. A Marked Content that contains only clip objects is a clip object.

8: Page Descriptions March 11, 1999

354 Adobe Systems Inc.

3. An empty Marked Content that is contained by a clip Marked Content is
part of the clip Marked Content. A Marked Place (denoted by MP and DP)
is treated the same as an empty Marked Content.

4. If both clip and marking objects occur between Marked Content delimiters,
then the clip objects are not marked by the enclosing Marked Content. That
is, any Marked Content attributes do not apply to the clip objects.

5. The largest tree of nested Marked Content operators that contains only
empty Marked Content and clip Marked Content is a clip Marked Content.

6. The save and restore operators (q and Q) may not occur within a Marked
Content that is used to bracket clip objects.

7. Marked Content must nest within BT/ET, and BT/ET must nest within
Marked Content.

8. Invisible graphic objects inside Marked Content are treated as rendered
objects. They are not clip objects.

Examples

Example 1:

/Clip BMC

100 100 10 10 re W n clip path
(Clip me) Tj object that is clipped

EMC

Example 2:

/Clip BMC

/PointText <<...>> BDC

BT

7 Tr begin text clip mode
/Pgf BMC

(Line 1) Tj

EMC

/Pgf BMC

(Line) Tj (2) Tj

EMC

ET set current text clip
EMC

100 100 10 10 re f filled path
EMC

Example 3:

/G1 BMC

/G2 BMC

March 11, 1999 8.10.3

8: Page Descriptions 355

/G3 BMC

0 0 m

100 100 l

0 100 l W n clip path 1
0 0 m

200 200 l

0 100 l f filled path
EMC

/G4 BMC

0 0 m

300 300 l

0 100 l W n clip path 2
EMC

EMC

100 100 10 10 re f filled path
EMC

Example 3 shows how nested clip Marked Content is handled. G3 does not apply
to clip path 1 because G3 also includes a filled path. G4 does apply to clip path 2,
but G2 does not apply to clip path 2.

Example 4:

/1 BMC

<clip path>

/2 BMC

/3 BMC

EMC

DP

EMC

EMC

BMC 2 contains only an empty Marked Content, and a DP. However, they are all
considered clip objects because they are all nested in BMC 1 which is clip-only
and has a real clip object in it. BMC 2 is not empty, but it only contains empty
Marked Content, so it is a clip object. The same rule applies to BMC 3.

Example 5:

/1 BMC

/2 BMC

/3 BMC

EMC

EMC

/4 BMC

<clip path>

EMC

EMC

8: Page Descriptions March 11, 1999

356 Adobe Systems Inc.

Here, BMC 1 becomes clip-only due to the nested clip path, and BMC 2 and MC 3
become clip objects due to their containment in BMC 1.

